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Abstract. A mechanism which may be responsible for the anomalies in the behaviour of type
II ferroelectrics near the lock-in transition is considered. The state of the system is suggested
to be quasistationary. The defects of the incommensurate modulation wave are found to play an
important role and give additional contributions to the thermodynamic characteristics of the system.

1. Introduction

Proper uniaxial ferroelectrics with incommensurate (IC) phases are commonly classified as
type II systems. Such a classification was introduced in [1] to emphasize the existence of the
two different types of incommensurate-to-ferroelectric transition observed experimentally in
ferroelectrics [2].

From a formal point of view, the main feature which characterizes these types is the
presence (type I) or absence (type II) of the Lifshitz invariant in the expansion of the system
thermodynamic potential [1]. The order parameter is usually considered to be two-component
in the case of type I systems (Rb2ZnCl4, K2SeO4 and other compounds of the A2BX4

family [2]). For type II systems the order parameter is one-component and corresponds to
spontaneous polarization oriented along some specific direction. Sodium nitrite NaNO2 [2],
thiourea SC(NH2)2 [2], BCCD [3] and(PbySn1−y)2P2(SexS1−x)6 solid solutions [4] belong
to the group of type II ferroelectrics.

The properties of IC phases in type I and type II ferroelectrics are similar in the vicinity of
the disordered-to-incommensurate transition. In particular, the spatial modulation of the order
parameter is almost sinusoidal.

An essential distinction appears when approaching the transition from the IC phase into
the ferroelectric state [1, 2]. In type I systems the dependence of the phase of the order
parameter on the position transforms from sinusoidal into a stepwise one. A domain-like
structure (soliton lattice) develops as the temperature decreases fromTI (the point of transition
from the disordered phase into the incommensurate state) to the lock-in valueTc [1, 2]. A
second-order lock-in phase transition can take place, at least in principle [5].

In contrast, in the case of type II ferroelectrics the squaring of the modulation wave profile
is not observed at the low-temperature boundary of the IC phase [2,3,6]. The only exception
is thiourea, for which a relatively large contribution of higher harmonics is found [7]. But
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even for thiourea the soliton lattice is not so developed as in the compounds of the A2BX4

family [8].
At the same time, in the proximity of the lock-in transition, proper uniaxial ferroelectrics

demonstrate features typical of type I systems. A rise of the dielectric constant at low
temperatures in the IC phase [9] and additional integrated satellite intensity [4] are examples
of such anomalous properties.

For the systems with the Lifshitz invariant the above-mentioned phenomena are commonly
explained on the basis of the soliton lattice concept (see, e.g., [10]). But in the case of proper
ferroelectrics, as we have stated above, experimental data clearly point to the fact that the
modulation wave is almost pure sinusoidal within the IC phase [2,3,6].

In principle, domain-like structures are theoretically possible for the systems with one-
component order parametersϕ(x) [11]. But for the parameters of the thermodynamic potential
found for certain compounds [12–14], the nonlinear states [11] are only metastable [15]. As for
the equilibrium state, the contribution of higher harmonics to the modulation wave is estimated
to be small [1,16,17].

Some anomalies, in particular the dielectric constant behaviour nearTc, may be explained
by taking into consideration long-range elastic forces [13,17]. However, the elastic contribution
is not sufficient to describe the temperature dependence of the order parameter and of the
modulation wavenumber and the main thermodynamic characteristics simultaneously, e.g. in
Sn2P2Se6 [18].

The existence of some phenomena, such as the anomalous hysteresis [19], the memory
effect [20] and the states of spin-glass type [21,22] (see also [23]), shows that nonequilibrium
processes are important for phase transitions in proper ferroelectrics.

The theory of stripple nucleation [24] is often used when considering anomalous hysteresis
[25] and long-time relaxation of susceptibility [9]. In the case of type II ferroelectrics the
problem is that the stripple nucleation [24] implies the existence of a soliton lattice.

The electronic mechanism is thought to be of importance when clarifying the memory
effect in Sn2P2Se6 [20]. However, such models are valid for semiconductors only.

The above-mentioned facts reveal that the properties of the IC phase near the lock-in
transition, as well as the nature of this transition, are not fully understood for type II systems.

In the present paper we discuss a conjecture according to which the state of type II
ferroelectrics is not truly equilibrium at the low-temperature boundary of the IC phase. The
defects of the order parameter modulation wave, such as the spatial variation of the modulation
amplitude and the change of initial phase (figures 1(a), 2(b)), are supposed to play an important
role in the thermodynamics of these systems.

In the vicinity of the lock-in transition the defects of the polarization wave form a structure.
Due to retarded temporal evolution, the states with the defect structure become quasistationary.
The existence of a quasistationary structure of polarization wave defects is the reason for the
additional contributions to the system characteristics (susceptibility, heat capacity etc). Under
some conditions, e.g. for a strong influence of impurities, the density of wave defects is so
large that the regular IC modulation is destroyed, and states similar to chaotic (amorphous)
ones may occur.

The structure of the paper is as follows. In section 2 we formulate the one-dimensional
Landau-type model used to describe the phase transitions in type II systems. Then, we
reinvestigate the role of higher harmonics of the order parameter modulation wave. For type II
ferroelectrics (excluding thiourea) the contribution of higher harmonics is found to be small.
On the other hand, numerical analysis shows that there exist a lot of states in which, besides
the fundamental IC modulation, subharmonics of the fundamental component are present
(figures 1(b), 2(b)). In such states the amplitude and the wavenumber of the IC wave are



Anomalous properties of uniaxial ferroelectrics 313

� ��

����

���

���
�D�

�
[
�

ϕϕ

SRVLWLRQ�[

��� ��� ��� ���

����

����

�
D
U
E
�
X
Q
L
W
V
�

�E�

$
P
S
O
L
W
X
G
H

ZDYHQXPEHU

Figure 1. The spatial dependence of the order parameterϕ(x) (a) and the wavenumber spectrum (b)
for the local minimum of the thermodynamic potential,ϕ(0) = 0.168,ϕ′′(0) = −0.072,8 ≈
−0.000 22 (for the global minimum (model (3))ϕ(0) ≈ 0.167,ϕ′′(0) ≈ −0.078,8 ≈ −0.000 34).
The material parameters are taken as for NaNO2 [12], q = 0.2. The initial phase of the modulation
waveϕ(x) differs byπ in neighbouring domains.
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Figure 2. As figure 1, but forq = 0.07 andϕ(0) = 0.272,ϕ′′(0) = −0.148,8 ≈ −0.0023 (for the
global minimum (model (3))ϕ(0) ≈ 0.354,ϕ′′(0) ≈ −0.124,8 ≈ −0.0050). The initial phase
of the modulation wave does not change. The arrow indicates the small higher (third) harmonics.

relatively close to the equilibrium ones. These states are metastable and correspond to the
local minima of the thermodynamic potential. Due to the existence of such local minima, the
thermodynamic potential surface is very complex.
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Possible consequences of the complex structure of the potential surface are considered
qualitatively in section 3. Taking into account the results of studying the growth kinetics of IC
domains [26–28], retarded temporal evolution of structural relaxation type is expected. The
appearance of quasistationary states with the defects of the polarization wave is discussed.

In section 4, we evaluate the influence of phase defects on the system characteristics in
the framework of a simple phenomenological model. In particular, the susceptibility may
increase asχ−1 ∼ (T − Tc +1T ), where1T is some constant, near the lock-in transition.
The conclusions are presented in section 5.

2. States with subharmonics of the fundamental IC wave

Phase transitions in type II ferroelectrics can be described in the framework of the Landau
theory. Following Ishibashiet al [16,29] we write the thermodynamic potential in the form

8 = 80
1

L

∫ L

0

[
(ϕ′′)2 − g(ϕϕ′)2 − γ (ϕ′)2 + qϕ2 +

p

2
ϕ4 +

1

3
ϕ6− ϕe

]
dx. (1)

Hereϕ(x) = Py(x) is the order parameter (the spontaneous polarizationP oriented along the
y-axis);ϕ′(x) ≡ ∂ϕ/∂x. The order parameter is assumed to be modulated along thex-axis;
the crystal length in this direction is equal toL. The material parametersg, γ ,p do not depend
on the temperatureT , but q = q0(T − T0), whereq0, T0 are some constants. The external
electric field is denoted bye.

In order to emphasize the physically relevant material parameters and simplify the analysis,
the scale transformation of the order parameterϕ(x), the space coordinatex and the material
parameters is performed in (1) (the factor80 appears due to this transformation) [15]. After the
scale transformation,γ = 1. We retain the notationγ to trace the contribution of the invariant
ϕ′2 which provides stabilization of the IC phase. Hence, only three effective parameters vary
in model (1):g, q, p.

The local part of the functional (1) corresponds to the standard expansion of the
thermodynamic potential in the Landau theory of phase transitions. For some proper uniaxial
ferroelectrics (sodium nitrite, Sn2P2Se6), the direct (virtual) transition from the disordered
phase into the commensurate state is expected to be of first order, i.e. the material parameterp

is to be negative [4,29]. In this case the invariant∼ϕ6 is required to provide the global system
stability. For the compounds withp > 0, e.g. thiourea, the term∼ϕ6 may be omitted.

The order parameterϕ(x) is an extremum of the functional (1) and must satisfy the
variational equation:

ϕ(IV ) + g(ϕ2ϕ′′ + ϕϕ′2) + γ ϕ′′ + qϕ + pϕ3 + ϕ5 = 0. (2)

At high temperatures the ground state of the system (1) is disordered:ϕ(x) = 0 [16].
With decreasing temperature, the transition from the disordered state into the incommensurate
phase takes place at the pointq = qI = q(TI ) = 1

4γ
2, if the parameterγ > 0. The existence

of a stable incommensurate state is a result of the competition and compromise between the
gradient invariants(ϕ′′)2 and(ϕ′)2: if γ > 0 the term(ϕ′)2 favours the spatial modulation of
the order parameter, and because(ϕ′′)2 the wavenumberb of the order parameter modulation
wave is finite.

One of the most characteristic features of the IC phase is the dependence of the wavenumber
b on the temperature. In model (1) this property is reproduced due to the invariant(ϕϕ′)2

[16,17]. This term is also very important when describing the behaviour of the susceptibility
at the low-temperature boundary of the IC phase [16]. Moreover, the nonlinear properties of
the order parameter modulation strongly depend on the value of the coefficient at the invariant
(ϕϕ′)2, i.e. on the value of the material parameterg [15].
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In the proximity of the pointqI the order parameter modulation wave is almost sinusoidal
[2]. As we have pointed out above, for most type II ferroelectrics the IC order parameter
configuration differs faintly from the pure sinusoidal even in the close vicinity of the lock-in
transition. That is why the one-harmonic approximation

ϕ(x) = a sin[b(x + x0)] (3)

is often used when describing the equilibrium distribution of the order parameter in the IC
phase in type II ferroelectrics (see, for example, [12–14,17]).

The one-harmonic model (3) reproduces fairly well a lot of properties of type II ferro-
electrics. But in order to evaluate the deviation from the sinusoidal behaviour, a more general
approach [15] is appropriate.

According to [15], for the systems (1) the equilibrium IC distribution of the order parameter
ϕ(x) can be approximated by

ϕ(x) = a sn[b(x + x0), k] (4)

where sn(x, k) is the Jacobi elliptic sine. Similarly to the case of (3), the model parameters
a, b, k are to be defined with the aid of minimization of the thermodynamic potential (1) [15].

The approximation (4) allows us to describe not only the linear stage of the temperature
evolution of the IC phase, but also the nonlinear features of the order parameter modulation [15].
In particular, the contribution of higher harmonics to the polarization wave can be estimated.
For this purpose, one should calculate the equilibrium value of the elliptic modulusk [15].
Then, using the Fourier expansion of the elliptic sine [30], it is easy to find the ratioan/a1,
wherea1 andan are the amplitudes of the fundamental and thenth harmonic, respectively. For
large values ofk (k ≈ 1), the fast Fourier transformation (FFT) of the modulation wave (4)
can be used as well, because the formulae [30] are not strictly correct ifk→ 1.

The results of such an investigation are summarized in table 1. They confirm the
conclusions of [1, 16, 17]: although one may construct an abstract system for which the ratio
a3/a1 is relatively large (the first row in table 1), in the real compounds, especially in NaNO2

and Sn2P2Se6, the role of higher harmonics is rather minor.

Table 1. The amplitudes of the higher harmonics of the IC modulation wave at the lock-in
temperatureTc (qc = q(Tc), kc = k(Tc); ϕ6 = 0 means that theϕ6-term is omitted; the
superscripts 1–3 indicate parameters corresponding to NaNO2 [12], Sn2P2Se6 [13] and BCCD [14],
respectively).

g p ϕ6 qc kc a3/a1 a5/a1

−10.0 1.00 0 −0.212 0.965 0.136 0.0220

−1.0 1.00 0 −0.690 0.768 0.052 0.0029

0.0 1.00 0 −1.176 0.642 0.032 0.0011

−9.511 −0.65 1 0.069 0.59 0.026 0.0007

−1.372 −0.19 1 −0.225 0.706 0.041 0.0018

−8.003 2.00 0 −0.365 0.887 0.086 0.0082

Hence, the soliton lattice concept is not appropriate when interpreting the anomalies in
the behaviour of type II ferroelectrics near the lock-in transition, at least in the framework of
model (4).

To obtain more information about the solutions of the variational equation (2), we have
studied this equation numerically.

The fourth-order Runge–Kutta numerical procedure is used for solving equation (2). As
long as we are searching for periodic solutions, it is reasonable to reduce the set of boundary
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conditionsS = {ϕ(0), ϕ′(0), ϕ′′(0), ϕ′′′(0)} to a simple one:S0 = {ϕ(0), 0.0, ϕ′′(0), 0.0}
whereϕ(0) > 0,ϕ′′(0) 6 0 [31]. For the reduced setS0 the solutions of (3) and (4) types appear
with some nonzero phase shiftsx0. A spatially homogeneous solutionϕ(x) = constant(x)
corresponds to the caseϕ′′(0) = 0.

Solving the variational equation (2), we also investigate the properties of the thermo-
dynamic potential surface8(ϕ(0), ϕ′′(0)) at different temperatures.

A qualitative analysis of the results obtained shows the following.
There exists a valley of the potential minima in the potential surface8(ϕ(0), ϕ′′(0)). The

thermodynamic potential changes abruptly within the boundaries of the valley [31]. A lot of
local minima are located in the vicinity of the global minimum.

The global minimum of the thermodynamic potential8 corresponds to the equilibrium
state. This state may be approximately described by model (3) or more precisely by
model (4).

In the states corresponding to the local minima (we consider the deepest of them) the
spatial dependence of the order parameterϕ(x) is more complex (figures 1, 2).

At least two pairs of subharmonics with the wavenumbersb ± ω,ω � b, are present
in the wavenumber spectra (figures 1(b), 2(b)). The subharmonics are almost symmetrically
located around the main componentb. The amplitude of one of these subharmonics may be
relatively large (figure 1(b)). It should be noted that the spectra with equal contributions of
subharmonicsb ± ω are typical as well.

If ω is much less thanb, the order parameterϕ(x) looks like a twice-modulated structure:
the amplitude of the IC wave alters in the space with a periodP which is much bigger than
the IC one—P � 2π/b (figures 1(a), 2(a)).

Within the spatial range in which the modulation wave amplitude is almost constant, the
characteristics of the twice-modulated structure are close to the equilibrium ones. In particular,
this is true for the value of the thermodynamic potential (per unit of length, of course). In
order to calculate the correct value of the thermodynamic potential, the spatial alteration of
the wave amplitude should be taken into account.

Hence, the regions where the modulation wave amplitude changes significantly are
similar to discommensurations. In fact, they separate the domains of almost equilibrium
IC modulation. In some cases the phase of modulation wave differs byπ in the neighbouring
domains (figure 1(a)).

If the periods of both modulations (fundamental and additional) are of the same order
(i.e. ω ∼ b), then irregular states appear (figure 3). The density of discommensurations is
too large, and the domains of IC phase are destroyed. It is known that the states with a large
number of domain walls are a form of the chaotic state [32].

The values of the thermodynamic potential for the equilibrium state80, for the twice-
modulated structure8ω and for the chaotic state8chaos , are related as80 < 8ω < 8chaos .

A remarkable feature of the twice-modulated structures is their numerical stability. The
numerical uncertainties are not essential if the lengthl of the numerical integration is less than
some critical valuelc (for l > lc the solution becomes unstable, i.e. its amplitude increases
infinitely). For the states with subharmonics, the value oflc is 102–105 times larger than the
critical length for the equilibrium state.

Twice-modulated structures have also been found in the framework of the chain model
for thiourea [33]. According to [33], the nodes (discommensurations) appear due to the
Umklapp terms in the free energy expansion. The Umklapp terms, which stabilize the higher-
order commensurate phases of C1/7 type, generate a finite number of subharmonics of the
fundamental component. The states with nodes are metastable [33].

Note that the Umklapp terms are absent in model (1).



Anomalous properties of uniaxial ferroelectrics 317

��� � ��

����

���

���

�D�
�
[
�

ϕϕ

SRVLWLRQ�[

��� ��� ��� ���

����

����

�
D
U
E
�
X
Q
L
W
V
�

�E�

$
P
S
O
L
W
X
G
H

ZDYHQXPEHU

Figure 3. As figure 2, but forϕ(0) = 0.352, ϕ′′(0) = −0.096,
8 ≈ −0.0019. The state is nearly irregular.

3. Quasistationary states as a possible origin of anomalous properties of type II
ferroelectrics

In order to clarify the role of the metastable states described in the preceding section, our
stationary consideration should be supplemented by investigation of the growth kinetics of the
IC structure. Such a study has been carried out numerically in [26–28].

In [26–28] model (1) is generalized by adding the gradient term(∂ϕ/∂z)2 with a large
positive coefficient (the latter is required to simulate the strong system anisotropy). Due to
such a generalization, two-dimensional nuclei of the IC phase are also taken into account. The
two-dimensional nuclei cost less energy than the one-dimensional ones, and their appearance
is more probable.

The analysis of the results obtained in [26–28] and the ones considered in the preceding
section shows that the following qualitative description of the IC phase in type II ferroelectrics
is possible.

Quenching from the disordered state to the IC phase or a change of temperature in the IC
phase puts the system into a nonequilibrium state.

Throughout the sample, relaxation starts. The amplitude of the order parameter and the
wavenumber of the modulation wave relax exponentially quickly to the almost equilibrium
values [26, 27]. The time for the amplitude relaxation seems to be of the same order as the
time for the order parameter relaxation in the disordered and commensurate phases (cf. [9]).

However, the polarization waveϕ(x) = af (bx + x0) is characterized not only by its
amplitudea and its wavenumberb but also by the initial phasex0. In the absence of the
mechanisms which may fix the initial phase throughout the sample,x0 is different at various
positions.

As a consequence, at the end of an early stage of relaxation a foam of clusters (domains)
of the IC phase appears [26]. Within the boundaries of the clusters the initial phasex0 changes,
and the polarization wave defects occur. In the space8(ϕ(0), ϕ′′(0)) the system moves into
the valley of the thermodynamic potential minima.

The main task of the late relaxation stage is to adjust the initial phasex0 throughout
the sample. The growth of the cluster size takes place. This process is similar to cellular
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structure coarsening [34]. In particular, the analysis [26, 27] reveals that the numberN(t)

of polarization wave defects (‘phase defects’ in the terms of [26, 27]) obeys the temporal
dependenceN(t) ∼ t−0.56. This result is close to the lawρ(t) ∼ t−1/2 of the relaxation of the
cell interface density [34] (see also [35]).

Thus, a typical feature of the late stage of relaxation is its long-duration character. This
conclusion is in agreement with experimental data (see, e.g., [9]).

In the space8(ϕ(0), ϕ′′(0)) the system slowly moves from one local minimum of the
thermodynamic potential to another.

The rate of relaxation changes with decreasing temperature. Close to the disordered-to-
incommensurate transition the gradient (nonlocal) gain of the thermodynamic potential (1)
is dominant. The adjustment of the initial phasex0 is strong. In the terms of the cellular
coarsening theory [34], the mobility of the cell interface is large. As a consequence, the
resultant quasistationary state contains a few phase defects (see figure 1 in [26]). Their existence
only slightly modifies the system characteristics.

Another situation is realized at the low-temperature boundary of the IC phase. Here the
local part of the thermodynamic potential is the main one. The mobility of cluster boundaries
diminishes, and the relaxation is critically slowed down [26]. The density of the modulation
wave defects is relatively large during the duration of the experiment, and additional gains of
the susceptibility, heat capacity etc are observed (see, e.g., [4]).

Impurities can significantly retard the processes of cellular coarsening [34,35]. Due to the
influence of impurities, the number of phase defects can become so substantial that the regular
IC structure will be destroyed. In this case the system state is chaotic. States resembling spin
glasses are observed in(PbySn1−y)2P2(SexS1−x)6 solid solutions, especially wheny > 0.2 and
x < 0.8 [21,22]. A fast cooling may also lead to the appearance of irregular structures [23,28].
It should be noted that the existence of chaotic states may attest that the relaxation processes
in type II ferroelectrics are similar to the structural relaxation in amorphous solids [35,36]. In
other words, hierarchically subordinated ensembles of clusters should be considered. Power,
logarithmic and even double-logarithmic temporal dependences may occur in this case [36].
This means that, in fact, the relaxation stops far from the true equilibrium state.

To some extent, the processes of the late stage are similar to the relaxation of the soliton
lattice in the ferroelectrics of the A2BX4 family [24, 25]. A phase defect annihilation is
analogous to nucleation of the IC stripple. The distinction is that the soliton energy is negative
in the IC phase, whereas the energy of the phase defect is always positive (a true equilibrium
state has no phase defects). From this point of view, the phase defect is closer to the domain
wall in the ferroelectric state.

In the case of nucleation, the appearance of a stripple or antistripple requires some
energy [24]. This leads to hysteresis [25].

The elimination of the phase defect requires some energy as well. But in contrast to the
soliton lattice case, the phase defects may exist at any temperature within the IC phase (with
varying density, of course). That is one of the reasons for the anomalously wide temperature
range of the dielectric constant hysteresis. The impurities will enlarge the hysteresis range,
slowing down the relaxation of the phase defect structure (cf. [19]).

4. The 1D model of the quasistationary state

At least two-dimensional models should be used when describing the relaxation processes
[26–28]. At the same time, a 1D model can be meaningful in a qualitative analysis of the
resultant quasistationary state.
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Let us consider a system in which the density of phase defects is so large that one may
speak of a phase defect structure, and simultaneously small enough that the state is still regular
(not chaotic). Due to the strong system anisotropy, the clusters are extended predominantly
along the direction perpendicular to the axis of the order parameter modulation. Then model
(1) is believed to be appropriate.

At first, we clarify a possible origin for the subharmonics (figures 1(b), 2(b)).
If the temperature is close toTI (T ≈ TI ) the amplitude of the order parameter is small

(a � 1) [15]. Hence, the variational equation (2) can be linearized:

ϕIV + γ ϕ′′ + qϕ = 0. (5)

The periodical solutions of equation (5) acquire the form

ϕ(x) = a1 cos(b1x + α1) + a2 cos(b2x + α2) (6)

where the wavenumbersb1,2 satisfy the equations

b4 − γ b2 + q = 0 (7)

and

b2
1,2 = b2

0[1± (1− q/qI )1/2] (8)

b2
0 =

1

2
γ. (9)

The wavenumberb0 minimizes the thermodynamic potential (1) for the one-harmonic
model (3):

8 = 1

2
a2(b4 − γ b2 + q) +

3

16
a4 (10)

where, for simplicity, we setg = 0 and neglect theϕ6-term (the latter means that the parameter
p is considered to be positive:p > 0 [16]).

At the pointT = TI the wavenumbersb1, b2 andb0 are equal to each other. The correlation
length

ξ = 2π

b1− b2
≈ 2π

b0
(1− q/qI )−1/2 q→qI→ ∞ (11)

is infinite, and there exists only one periodic solution (3), (9) (in fact, it exists formally because
its amplitude is equal to zero atT = TI [16]).

If T 6 TI then ξ < ∞, and a set of periodic solutions appears. In addition to the
fundamental harmonic (3), (9), the subharmonics

b1,2 ≈ b0 ± 1

2
b0(1− q/qI )1/2 ≡ b0 ± ω

occur. For the solution (3), (9), the thermodynamic potential is negative:80 < 0 [16]
(this is the global minimum if the amplitudea takes its equilibrium value as well). For the
subharmonics (6), (8), the potential is positive:8 > 0 (cf. (7) and (10)). In the states in
which both the relatively large fundamental component and subharmonics are present, the
thermodynamic potential8ω takes an intermediate value:80 < 8ω < 0 (local minima).

Strictly speaking, the solutions (6), (8) are exact only at the pointT = TI . But it seems
plausible that equation (2) possesses analogous solutions, too.

Now let us evaluate the influence of subharmonics on the system thermodynamic
characteristics.
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In order to calculate the contribution of subharmonics in a ‘pure’ form, we consider a
simple situation when the order parameter has the following spatial dependence (compare
figure 1(a) in the present paper with figure 2(a) in [33] and figure 2 in [26]):

ϕ(x) = 1

2
a cos(b − ω)x +

1

2
a cos(b + ω)x + p0 = a cosωx cosbx + p0 (12)

whereL−1 � ω � b (L is the crystal length);p0 = constant(x) simulates the influence of
the electric fielde.

Integrating the thermodynamic potential (1) with respect to the order parameter (12), we
suggest for simplicity that the wavenumbersω andb are commensurate:mω = nb, where
m, n are some integers. We also omit theϕ6-invariant in (1) (p > 0).

Then the minimization of the thermodynamic potential with respect toa, b, p0 yields (for
the caseg = 0)

a2 = 16

9p
(qI − q +1(ω)) ≈ 4

3
a2

0 a2
0 =

4

3p
(qI − q) (13)

b2 = 1

2
γ − 3ω2 = b2

0 − 3ω2 b2
0 =

1

2
γ (14)

8 = − 2

9p
(qI − q +1(ω))2 ≈ 2

3
80 80 = − 1

3p
(qI − q)2 (15)

χ−1 = 8

3
qI − 2

3
q +

8

3
1(ω) ≈ 2q0

(
4

3
TI − 1

3
T − T0

)
χ−1

0 = 2q0(2TI − T − T0).

(16)

Here

χ = lim
e→0

dp0

de

is the susceptibility and1(ω) = 8ω4 − 2γω2 ≈ −4b2
0ω

2. The expressions for the amplitude
a, the wavenumberb and the thermodynamic potential8 are given for the casee = 0. The
equilibrium (for model (3))a0, b0,80 andχ−1

0 are written out for comparison.
As follows from the formulae (13)–(16), the additional modulation of the order parameter

ϕ(x), caused by the contribution of the subharmonics and expressed in (12) by means of the
factor cosωx, changes the thermodynamic characteristics of the system. In particular, the
slope of the inverse susceptibility becomes smaller. Note again that generally the relationship
(16) is assumed to be possible in the vicinity of the lock-in transition andχ−1 → χ−1

0 when
T → TI .

The invariant(ϕϕ′)2 is essential when describing the susceptibility behaviour [16, 17].
Assuming thatg 6= 0 (g < 0 [15]) and that the amplitudea is relatively small (cf. [16]), one
can obtain

χ−1 ≈ 8

3
qI − 2

3
q +

4gγ

3(3p − gγ )(qI − q) = q0

(
σ − 2

3

)
(T − Tc +1T ) (17)

where

σ = −4

3
gγ (3p − gγ )−1

1T =
(
σ − 2

3

)−1[(8

3
− σ

)
1TI − 21T0

]
1Tn = Tn − Tc
n = I, 0.
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If 1T/Tc � 1 andσ − 2
3 > 0, then the relationship (17) acquires a form similar to

the Curie–Weiss law. Such a susceptibility behaviour (χ ∼ (T − Tc)−1) is typical of type II
ferroelectrics in the proximity of the lock-in transition [9, 13]. Note that in deriving (17) we
do not take into account the second harmonic of the modulation wave. The second harmonic
is important for reproducing the susceptibility rise nearTc if the state of the system is regarded
as true equilibrium (e.g. in the framework of model (3)) [16,17].

5. Conclusions

In the present paper we have considered a mechanism which may be responsible for the
anomalies in the behaviour of type II ferroelectrics in the proximity of the lock-in transition.

NearTc the states of type II ferroelectrics are suggested to be quasistationary. In addition
to the fundamental IC modulation of the order parameter, there exists a structure of modulation
wave defects. The reason for such a behaviour is the retarded temporal evolution of the system
in the late stages of relaxation. To some extent, the phase defects are similar to domain walls
or discommensurations. The defect structure gives additional contributions to the system
characteristics (susceptibility, heat capacity etc). If the density of phase defects is very large
(e.g. due to a strong influence of impurities), chaotic states occur.

The phase defects are thought to exist in the systems of type I as well. But their role might
be minor in this case. In fact, in such systems the anisotropy invariant (the Umklapp term of
relatively low order) is a powerful tool for controlling the phase of the order parameter [1].
The soliton lattice appears just due to the anisotropy invariant. This term is a part of the local
gain of the thermodynamic potential and its role increases with decrease of the temperature
down toTc.

An analogous mechanism is absent in the case of type II ferroelectrics. The adjustment of
the phase of the modulation wave is favoured by the nonlocal (gradient terms in (1)) interactions
only. But the role of the gradient gain is relatively faint at the low-temperature boundary of
the IC phase [26].

A one-dimensional model may be useful when describing the quasistationary states in
type II ferroelectrics. In particular, the increase of susceptibility is predicted near the lock-in
transition. The reason for the susceptibility rise is a contribution of the subharmonics of the
fundamental component of the modulation wave.

The integrated description of the temporal evolution and stationary properties of the IC
phase in type II ferroelectrics seems to be possible in the framework of the field supersymmetric
formulation of the phase transition theory [35]. This approach gives possibilities for explaining
the existence of two stages of the relaxation, the appearance of retarded evolution of the
structural relaxation type and the dependence of system characteristics on the rate of cooling
and on the sample history. In particular, the recent investigation performed with the aid of the
generating functional method shows that the mean value of the order parameter fluctuations
may be nonzero in the most probable state of thermodynamic systems [37].
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